3.9.86 \(\int \frac {(d+e x)^{9/2}}{(c d^2-c e^2 x^2)^{3/2}} \, dx\) [886]

Optimal. Leaf size=160 \[ \frac {256 d^3 \sqrt {d+e x}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {64 d^2 (d+e x)^{3/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {8 d (d+e x)^{5/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {2 (d+e x)^{7/2}}{5 c e \sqrt {c d^2-c e^2 x^2}} \]

[Out]

-64/5*d^2*(e*x+d)^(3/2)/c/e/(-c*e^2*x^2+c*d^2)^(1/2)-8/5*d*(e*x+d)^(5/2)/c/e/(-c*e^2*x^2+c*d^2)^(1/2)-2/5*(e*x
+d)^(7/2)/c/e/(-c*e^2*x^2+c*d^2)^(1/2)+256/5*d^3*(e*x+d)^(1/2)/c/e/(-c*e^2*x^2+c*d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {671, 663} \begin {gather*} -\frac {2 (d+e x)^{7/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {8 d (d+e x)^{5/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {64 d^2 (d+e x)^{3/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}+\frac {256 d^3 \sqrt {d+e x}}{5 c e \sqrt {c d^2-c e^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(9/2)/(c*d^2 - c*e^2*x^2)^(3/2),x]

[Out]

(256*d^3*Sqrt[d + e*x])/(5*c*e*Sqrt[c*d^2 - c*e^2*x^2]) - (64*d^2*(d + e*x)^(3/2))/(5*c*e*Sqrt[c*d^2 - c*e^2*x
^2]) - (8*d*(d + e*x)^(5/2))/(5*c*e*Sqrt[c*d^2 - c*e^2*x^2]) - (2*(d + e*x)^(7/2))/(5*c*e*Sqrt[c*d^2 - c*e^2*x
^2])

Rule 663

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*((a + c*x^2)^(p
 + 1)/(c*(p + 1))), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p,
 0]

Rule 671

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*((a + c*x^2)^(p
 + 1)/(c*(m + 2*p + 1))), x] + Dist[2*c*d*(Simplify[m + p]/(c*(m + 2*p + 1))), Int[(d + e*x)^(m - 1)*(a + c*x^
2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[Simplify[m + p]
, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{9/2}}{\left (c d^2-c e^2 x^2\right )^{3/2}} \, dx &=-\frac {2 (d+e x)^{7/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}+\frac {1}{5} (12 d) \int \frac {(d+e x)^{7/2}}{\left (c d^2-c e^2 x^2\right )^{3/2}} \, dx\\ &=-\frac {8 d (d+e x)^{5/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {2 (d+e x)^{7/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}+\frac {1}{5} \left (32 d^2\right ) \int \frac {(d+e x)^{5/2}}{\left (c d^2-c e^2 x^2\right )^{3/2}} \, dx\\ &=-\frac {64 d^2 (d+e x)^{3/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {8 d (d+e x)^{5/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {2 (d+e x)^{7/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}+\frac {1}{5} \left (128 d^3\right ) \int \frac {(d+e x)^{3/2}}{\left (c d^2-c e^2 x^2\right )^{3/2}} \, dx\\ &=\frac {256 d^3 \sqrt {d+e x}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {64 d^2 (d+e x)^{3/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {8 d (d+e x)^{5/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}-\frac {2 (d+e x)^{7/2}}{5 c e \sqrt {c d^2-c e^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.34, size = 66, normalized size = 0.41 \begin {gather*} -\frac {2 \sqrt {d+e x} \left (-91 d^3+43 d^2 e x+7 d e^2 x^2+e^3 x^3\right )}{5 c e \sqrt {c \left (d^2-e^2 x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(9/2)/(c*d^2 - c*e^2*x^2)^(3/2),x]

[Out]

(-2*Sqrt[d + e*x]*(-91*d^3 + 43*d^2*e*x + 7*d*e^2*x^2 + e^3*x^3))/(5*c*e*Sqrt[c*(d^2 - e^2*x^2)])

________________________________________________________________________________________

Maple [A]
time = 0.50, size = 70, normalized size = 0.44

method result size
gosper \(\frac {2 \left (-e x +d \right ) \left (-e^{3} x^{3}-7 d \,e^{2} x^{2}-43 d^{2} e x +91 d^{3}\right ) \left (e x +d \right )^{\frac {3}{2}}}{5 e \left (-x^{2} c \,e^{2}+c \,d^{2}\right )^{\frac {3}{2}}}\) \(66\)
default \(\frac {2 \sqrt {c \left (-e^{2} x^{2}+d^{2}\right )}\, \left (-e^{3} x^{3}-7 d \,e^{2} x^{2}-43 d^{2} e x +91 d^{3}\right )}{5 \sqrt {e x +d}\, c^{2} \left (-e x +d \right ) e}\) \(70\)
risch \(\frac {2 \left (e^{2} x^{2}+8 d x e +51 d^{2}\right ) \left (-e x +d \right ) \sqrt {-\frac {c \left (e^{2} x^{2}-d^{2}\right )}{e x +d}}\, \sqrt {e x +d}}{5 e \sqrt {-c \left (e x -d \right )}\, \sqrt {-c \left (e^{2} x^{2}-d^{2}\right )}\, c}+\frac {16 d^{3} \sqrt {-\frac {c \left (e^{2} x^{2}-d^{2}\right )}{e x +d}}\, \sqrt {e x +d}}{e \sqrt {c \left (-e x +d \right )}\, \sqrt {-c \left (e^{2} x^{2}-d^{2}\right )}\, c}\) \(167\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(9/2)/(-c*e^2*x^2+c*d^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/5/(e*x+d)^(1/2)*(c*(-e^2*x^2+d^2))^(1/2)/c^2*(-e^3*x^3-7*d*e^2*x^2-43*d^2*e*x+91*d^3)/(-e*x+d)/e

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 44, normalized size = 0.28 \begin {gather*} -\frac {2 \, {\left (x^{3} e^{3} + 7 \, d x^{2} e^{2} + 43 \, d^{2} x e - 91 \, d^{3}\right )} e^{\left (-1\right )}}{5 \, \sqrt {-x e + d} c^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(9/2)/(-c*e^2*x^2+c*d^2)^(3/2),x, algorithm="maxima")

[Out]

-2/5*(x^3*e^3 + 7*d*x^2*e^2 + 43*d^2*x*e - 91*d^3)*e^(-1)/(sqrt(-x*e + d)*c^(3/2))

________________________________________________________________________________________

Fricas [A]
time = 3.56, size = 76, normalized size = 0.48 \begin {gather*} \frac {2 \, {\left (x^{3} e^{3} + 7 \, d x^{2} e^{2} + 43 \, d^{2} x e - 91 \, d^{3}\right )} \sqrt {-c x^{2} e^{2} + c d^{2}} \sqrt {x e + d}}{5 \, {\left (c^{2} x^{2} e^{3} - c^{2} d^{2} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(9/2)/(-c*e^2*x^2+c*d^2)^(3/2),x, algorithm="fricas")

[Out]

2/5*(x^3*e^3 + 7*d*x^2*e^2 + 43*d^2*x*e - 91*d^3)*sqrt(-c*x^2*e^2 + c*d^2)*sqrt(x*e + d)/(c^2*x^2*e^3 - c^2*d^
2*e)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{\frac {9}{2}}}{\left (- c \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(9/2)/(-c*e**2*x**2+c*d**2)**(3/2),x)

[Out]

Integral((d + e*x)**(9/2)/(-c*(-d + e*x)*(d + e*x))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.63, size = 140, normalized size = 0.88 \begin {gather*} -\frac {128 \, \sqrt {2} d^{3} e^{\left (-1\right )}}{5 \, \sqrt {c d} c} + \frac {16 \, d^{3} e^{\left (-1\right )}}{\sqrt {-{\left (x e + d\right )} c + 2 \, c d} c} + \frac {2 \, {\left (60 \, \sqrt {-{\left (x e + d\right )} c + 2 \, c d} c^{18} d^{2} e^{4} - 10 \, {\left (-{\left (x e + d\right )} c + 2 \, c d\right )}^{\frac {3}{2}} c^{17} d e^{4} + {\left ({\left (x e + d\right )} c - 2 \, c d\right )}^{2} \sqrt {-{\left (x e + d\right )} c + 2 \, c d} c^{16} e^{4}\right )} e^{\left (-5\right )}}{5 \, c^{20}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(9/2)/(-c*e^2*x^2+c*d^2)^(3/2),x, algorithm="giac")

[Out]

-128/5*sqrt(2)*d^3*e^(-1)/(sqrt(c*d)*c) + 16*d^3*e^(-1)/(sqrt(-(x*e + d)*c + 2*c*d)*c) + 2/5*(60*sqrt(-(x*e +
d)*c + 2*c*d)*c^18*d^2*e^4 - 10*(-(x*e + d)*c + 2*c*d)^(3/2)*c^17*d*e^4 + ((x*e + d)*c - 2*c*d)^2*sqrt(-(x*e +
 d)*c + 2*c*d)*c^16*e^4)*e^(-5)/c^20

________________________________________________________________________________________

Mupad [B]
time = 0.75, size = 104, normalized size = 0.65 \begin {gather*} \frac {\sqrt {c\,d^2-c\,e^2\,x^2}\,\left (\frac {2\,x^3\,\sqrt {d+e\,x}}{5\,c^2}-\frac {182\,d^3\,\sqrt {d+e\,x}}{5\,c^2\,e^3}+\frac {14\,d\,x^2\,\sqrt {d+e\,x}}{5\,c^2\,e}+\frac {86\,d^2\,x\,\sqrt {d+e\,x}}{5\,c^2\,e^2}\right )}{x^2-\frac {d^2}{e^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(9/2)/(c*d^2 - c*e^2*x^2)^(3/2),x)

[Out]

((c*d^2 - c*e^2*x^2)^(1/2)*((2*x^3*(d + e*x)^(1/2))/(5*c^2) - (182*d^3*(d + e*x)^(1/2))/(5*c^2*e^3) + (14*d*x^
2*(d + e*x)^(1/2))/(5*c^2*e) + (86*d^2*x*(d + e*x)^(1/2))/(5*c^2*e^2)))/(x^2 - d^2/e^2)

________________________________________________________________________________________